Dynamics measured in a non-Archimedean field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wandering Domains in Non-archimedean Polynomial Dynamics

We extend a recent result on the existence of wandering domains of polynomial functions defined over the p-adic field Cp to any algebraically closed complete non-archimedean field CK with residue characteristic p > 0. We also prove that polynomials with wandering domains form a dense subset of a certain one-dimensional family of degree p + 1 polynomials in CK [z]. Given a rational function φ ∈ ...

متن کامل

Dynamics of non-archimedean Polish groups

A topological group G is Polish if its topology admits a compatible separable complete metric. Such a group is non-archimedean if it has a basis at the identity that consists of open subgroups. This class of Polish groups includes the profinite groups and (Qp, +) but our main interest here will be on non-locally compact groups. In recent years there has been considerable activity in the study o...

متن کامل

A Criterion for Potentially Good Reduction in Non-archimedean Dynamics

Let K be a non-archimedean field, and let φ ∈ K(z) be a polynomial or rational function of degree at least 2. We present a necessary and sufficient condition, involving only the fixed points of φ and their preimages, that determines whether or not the dynamical system φ : P → P has potentially good

متن کامل

Generalized power series on a non - Archimedean field

Power series with rational exponents on the real numbers field and the Levi-Civita field are studied. We derive a radius of convergence for power series with rational exponents over the field of real numbers that depends on the coefficients and on the density of the exponents in the series. Then we generalize that result and study power series with rational exponents on the Levi-Civita field. A...

متن کامل

Wandering Domains and Nontrivial Reduction in Non-archimedean Dynamics

Let K be a non-archimedean field with residue field k, and suppose that k is not an algebraic extension of a finite field. We prove two results concerning wandering domains of rational functions φ ∈ K(z) and Rivera-Letelier’s notion of nontrivial reduction. First, if φ has nontrivial reduction, then assuming some simple hypotheses, we show that the Fatou set of φ has wandering components by any...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: P-Adic Numbers, Ultrametric Analysis, and Applications

سال: 2013

ISSN: 2070-0466,2070-0474

DOI: 10.1134/s2070046613010019